(120-2x)(100-2x)=2x^2+20x

Simple and best practice solution for (120-2x)(100-2x)=2x^2+20x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (120-2x)(100-2x)=2x^2+20x equation:



(120-2x)(100-2x)=2x^2+20x
We move all terms to the left:
(120-2x)(100-2x)-(2x^2+20x)=0
We add all the numbers together, and all the variables
(-2x+120)(-2x+100)-(2x^2+20x)=0
We get rid of parentheses
-2x^2+(-2x+120)(-2x+100)-20x=0
We multiply parentheses ..
-2x^2+(+4x^2-200x-240x+12000)-20x=0
We get rid of parentheses
-2x^2+4x^2-200x-240x-20x+12000=0
We add all the numbers together, and all the variables
2x^2-460x+12000=0
a = 2; b = -460; c = +12000;
Δ = b2-4ac
Δ = -4602-4·2·12000
Δ = 115600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{115600}=340$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-460)-340}{2*2}=\frac{120}{4} =30 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-460)+340}{2*2}=\frac{800}{4} =200 $

See similar equations:

| -2x-5=2-4x-{x-1} | | 5x-12=70-2x | | h-3h=6h+5-8 | | (-2x-18)^2=0 | | 2n-72=16 | | x=168 | | y=(8.3×10-6)-(1.2×10-7) | | -81x^2=-49 | | 5x+5+18+4=180 | | 5x+5=18+4 | | n2​​−14n+33=0 | | 3x-4=-(2-3x) | | 70+7x-7+3x+7=180 | | (x-10)/2=x+10 | | 12=x3+9 | | u/9=12 | | 36h+72=216 | | -3(4r+8)=14-r | | 3x(x+1)=8x+1 | | (6-3x)(2+7x)(x+1)=0 | | -2(3+4p)=2(-3p+4) | | -10.8n+15.13=2.8n-15.1n-9.32 | | 2x/3+11/4=3-11x/6 | | z/6=-3 | | 9x+26x+7x-17=2x+(-3x)+5x | | 5.6b=32 | | 6(2n-6)-4n=-4 | | 10.4u-13.57=18.39+15.1u | | 2-2t=t+17 | | x2=x+56 | | 0=16t^2+96t+144 | | 4x^2+24x+45=0 |

Equations solver categories